Deviational particle Monte Carlo for the Boltzmann equation

نویسنده

  • Wolfgang Wagner
چکیده

The paper describes the deviational particle Monte Carlo method for the Boltzmann equation. The approach is an application of the general “control variates” variance reduction technique to the problem of solving a nonlinear equation. The deviation of the solution from a reference Maxwellian is approximated by a system of positive and negative particles. Previous results from the literature are modified and extended. New algorithms are proposed that cover the nonlinear Boltzmann equation (instead of a linearized version) with a general interaction model (instead of hard spheres). The algorithms are obtained as procedures for generating trajectories of Markov jump processes. This provides the framework for deriving the limiting equations, when the number of particles tends to infinity. These equations reflect the influence of various numerical approximation parameters. Detailed simulation schemes are provided for the variable hard sphere interaction model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A low-variance deviational simulation Monte Carlo for the Boltzmann equation

We present an efficient particle method for solving the Boltzmann equation. The key ingredients of this work are the variance reduction ideas presented in Baker and Hadjiconstantinou [L.L. Baker, N.G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann Equation, Physics of Fluids, 17 (2005) (art. no, 051703)] and a new collision integral formulation which allows the...

متن کامل

Low-noise Monte Carlo simulation of the variable hard sphere gas

We present an efficient particle simulation method for the Boltzmann transport equation based on the low-variance deviational simulation Monte Carlo approach to the variable-hard-sphere gas. The proposed method exhibits drastically reduced statistical uncertainty for low-signal problems compared to standard particle methods such as the direct simulation Monte Carlo method. We show that by enfor...

متن کامل

Low-variance deviational simulation Monte Carlo

We present and discuss a particle simulation method for solving the Boltzmann equation which incorporates the variance reduction ideas presented in L. L. Baker and N. G. Hadjiconstantinou Physics of Fluids 17, 051703 2005 . The variance reduction, achieved by simulating only the deviation from equilibrium, results in a significant computational efficiency advantage for low speed flows compared ...

متن کامل

Monte Carlo formulation of ab initio phonon transport and its application to the study of kinetic effects in graphene ribbons MASSACHUSET -

We present a deviational Monte Carlo method for solving the Boltzmann equation for phonon transport subject to the linearized ab initio 3-phonon scattering operator. Phonon dispersion relations and transition rates are obtained from density functional theory calculations. The ab initio scattering operator replaces the commonly used relaxation-time approximation, which is known to neglect, among...

متن کامل

Efficient multiscale methods for micro / nanoscale solid state heat transfer

In this thesis, we develop methods for solving the linearized Boltzmann transport equation (BTE) in the relaxation-time approximation for describing small-scale solidstate heat transfer. We first discuss a Monte Carlo (MC) solution method that builds upon the deviational energy-based Monte Carlo method presented in [J.-P. Praud and N.G. Hadjiconstantinou, Physical Review B, 84(20), p. 205331, 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Monte Carlo Meth. and Appl.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008